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Abstract
The distribution of an electrolyte solution close to a charge macroion is
investigated theoretically. A local density functional form based on one
component plasma theory is proposed to incorporate the correlations between
the microions into Poisson–Boltzmann theory. Our results are compared with
those obtained by the mean-field approximation.

1. Introduction

Macromolecules show several types of instabilities. In solution, the particles agglomerate due
to the depletion forces. They also might exhibit a liquid–gas phase transition similar to the
phase separation present in molecular liquids. For many biological systems such as proteins,
DNA and cholesterol and in industrial applications, such as paints and superabsorbants, these
instabilities lead to undesirable effects. The presence of charges is one way of generating
the osmotic pressure required to prevent agglomeration. According to traditional Derjaguiin–
Landau–Verwey–Overbeek (DLVO) [1], theory the competition between screened Coulomb
repulsion and van der Waals attraction leads to stabilization of the suspension. However,
this conclusion is not obvious. The interaction between charged objects is strongly affected
by the electrolytes present in the solution. The macroions attract the counterions and repel
the coions which generate large inhomogeneities in the densities of the electrolytes. The
main effect of these inhomogeneities is the screening of the Coulomb interaction between the
polyions that is characterized by the Debye–Hückel screening length [2] which at the mean-
field level would decrease Coulomb repulsion in accordance with DLVO theory. However, for
high concentrations of multivalent electrolytes, the fluctuations involved become relevant. In
this case, the distribution of microions must be such to withstand the repulsion between the
macromolecules and attraction between like-charged particles arises. This is observed both
experimentally [3] and in simulations [4].

One of the main theoretical approaches employed to describe the distribution of the
microions surrounding a macroion is Poisson–Boltzmann (PB) theory [1, 5]. It treats the
microion interactions at mean-field level by neglecting the correlations and the finite size
effects. Its linearized form, usually called the Debye–Hückel expression, provides a very
simple and intuitive form for screening microions [2]. PB theory has been quite successful in
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describing a number of systems with Debye–Hückel low screening lengths as is the case with
low ionic strengths or low dielectric constants. The major problems with PB theory is the fact
that the ionic correlations are not taken into account and that any effects due to the finite size of
microions are neglected. Each ion is assumed to interact with the average electrostatic field as
measured by a small test particle. However, if an ion is present at position, r , it tends to push
ions away from that point. This effect can be dominant if the ionic strength is high as is the
case of systems with low dielectric constants, multivalent counterions or high concentrations
of microions.

More sophisticated methods such as integral equations provide a very elegant way of
including correlations [6,7]. The problem with these theories is that they can only be solved by
lengthy numerical calculations. Therefore, in order to make any progress, approximations at the
direct-correlation-function level have to be made. At this point, different theories give different
options for this function. Whatever theory is chosen it leads to a series of approximations that
instead of clarifying the source of correlations responsible for the physical phenomena tend to
obscure it.

To gain some insight into the relevance of the various sources of correlations, we can
explore a specific case: high macroion concentration. The description of this mixture is much
simpler because, when the volume fraction of polyions is not low, the macroions arrange
themselves in a regular structure. Thus, one can take advantage of the translational invariance
of the lattice and assume that each macroparticle and its counterions are enclosed in a Wigner–
Seitz (WS) cell [8–10]. Then the thermodynamic properties of the system are fully determined
by the distribution of counterions inside that cell. At the mean-field level, this density profile is
given by the PB approximation where correlations are neglected. To circumvent this problem
without loosing the simplicity of the density-functional approximation, we recently derived the
Debye–Hückel-hole-cavity (DHHC) theory that takes into account the ion correlations [11–13]
in local fashion. DHHC locally approximates the correlational contributions beyond mean-
field theory by the free energy of the one component plasma (OCP) [14,15]. Applying DHHC
to the theoretical description of screening of charged rods and colloids we were able to obtain
density profiles in accord with those obtained by the simulations [11–13].

Nevertheless, despite the success of DHHC in describing a wide range of systems where
polyions were surrounded solely by counterions, we could not apply its original form to systems
where coions were present. Here we extend this approach to include the effects produced by
the presence of salt. Our main purpose is to check up to what extent a local theory is able to
account for all the correlations, including the ones that ultimately lead to attraction between
like-charged macroions.

The reminder of this manuscript goes as follows. The OCP hole cavity theory and the
modifications made to include the presence of coions is presented in section 2. We apply
the method to a specific geometry, a charged colloid, and give our results and conclusions in
section 3.

2. Density-functional approach: Debye–Hückel-hole-cavity

A density-functional theory for inhomogeneous distribution of point-like counterions and
coions around a polyion is based on the minimization of free energy

F [ni(�r)] = FPB[ni(�r)] +
∫

d3r fOCPHC[ni(�r)] (1)
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under the constraint of charge neutrality. The first term in (1)

βFPB[ni(�r)] =
∫

d3r n+(�r) ln(n+(�r)a3) +
∫

d3r n−(�r) ln(n−(�r)a3)

+βqv+

∫
d3r n+(�r)ψ[ni(�r)] − βqv−

∫
d3r n−(�r)ψ[ni(�r)]} (2)

contains in the first part the entropy of the mobile positive and negative ions and in the second
part both the electrostatic interaction of the small ions with the macroion and the mean-
field electrostatic interaction between the microions. Minimization of (2) gives the Boltzmann
distribution that combined with the Poisson equation leads to the mean-field PB density profile.
The expressionfOCPHC accounts for the correlations between the small ions. The main difficulty
is to find an appropriate expression for this correlational energy.

Recently, we derived an expression for fOCPHC when only counterions are present based on
the local description of OCP [11]. In order to extend this approach for including correlational
effects when positive and negative ions are present, we propose splitting the total correlational
energy into two contributions, fOCPHC = f +

OCPHC + f −
OCPHC. The first term accounts for the

correlations between the positive ions while the second term takes care of the correlations
between the negative ions. Here we will neglect the different-charges correlational effects.
The way we derive the expression for f +

OCPHC goes as follows. Let us assume a number N+

of identical point particles of valence v+ and a positive unit charge q inside the volume V .
The macroion of charge −Zq and the N− coions of valence v− and unit charge −q play the
role of an uniform neutralizing background of density v+n

+
B = Z/V +N−v−/V and dielectric

constant ε. The OCP electrostatic free-energy density associated with the correlations between
the counterions can be derived from the electrostatic potential φ+

OCP(r). To obtain an explicit
expression for φ+

OCP(r), approximations must be made. We proposed the DHHC strategy that,
following the early ideas of the Debye–Hückel-hole theory [16], postulates that around any
microion, there is a correlation hole of radius h+ where no other ion can be found and also a
cavity a+ < h+ where no background is present. In this case the charge density is given by

ρ+
OCP(r) =



qv+δ(�r) : 0 � r < a+

−qv+n
+
B : a � r < h+

−εκ2
+φ

+
OCP (r) : h+ � r

(3)

where κ+ = √
4πλBv2

+n
+
B is the inverse of the screening length, λB = q2β/ε is the Bjerrum

length. A systematic way of fixing h+ results from excluding particles from a region where
their Coulomb energy is larger than some threshold. A natural choice for the latter is the
thermal energy kBT that gives

κ+h+ = [
(ω+ − 1)3 + (κ+a+)

3
]1/3

(4)

withω+ = (1+3v2
+λBκ+)

1/3. Using this prescription together with (3) and the Poisson equation

∇2φ+
OCP(r) = −4π

ε
[ρ+

OCP(r)− v+qn
+
B] (5)

an explicit expression for φ+
OCP(r) is found. Once the potential at the position of the central

ion is known, the electrostatic contribution to the free-energy density, f +
DHHC is obtained by

the Debye charging process [2].

βf +
DHHC(n

+
B) = n+

B
(κ+a)

2

4
− n+

B

∫ ω+

1
dω+

×
{

ω2
+

2(ω3
+ − 1)

�+(ω+)
2/3 +

ω3
+

(1 +�+(ω+)1/3)(ω
2
+ + ω+ + 1)

}
(6)
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Figure 1. Integrated charge distribution, P(r) versus ln r for a spherical cell containing a colloid
of charge Z = 180 and divalent counterions and 2Ns = 180 divalent salt ions. The cell radius and
colloidal radius are R = 40a and r0 = 8a, respectively. The Bjerrum length is λB = 2a. The solid
curve is the prediction from PB theory. The increase in the counterion condensation is captured by
the DHHC (dashed curve).

where

�+(ω+) = (ω+ − 1)3 +
(κ+a+)

3

3v2
+λBκ+

(ω3
+ − 1). (7)

The derivation off −
DHHC follows the same lines as described above. The expressionsf +

DHHC(n
+
B)

and f −
DHHC(n

−
B )written in terms of the homogeneous density are used in the local density func-

tional (1) by making the density inhomogeneous n+
B → n+(�r) and n−

B → n−(�r).
Then the equilibrium density profile of the counterions and coions surrounding the

macroion are obtained by functional minimization of (1) under the constraint of global charge
neutrality. This leads to the distribution for the counterions and coions given by

n±(r) = n±
0 exp(∓qv±βψ(r)− βµ±

OCPHC[n±(r)]) (8)

where

µ±
OCPHC = ∂f ±

OCPHC

∂n±(r)
(9)

and where n±
0 is obtained from the required charge neutrality.

3. Results and conclusions

To check our approach, we apply the correlation free-energy density fOCPHC to the problem of
the screening of a charged colloid. Colloidal suspensions are present in our everyday life from
industrial systems [17,18] such as clay to biological structures such as cholesterol [19]. Much
of the thermodynamic behaviour of solutions of this type is determined by the distribution of
counterions around the polyion. Here we explore what effects our correlational free-energy
density is able to capture when salt is added to the system. For that purpose, we consider a
charged colloid of radius r0/a = 8 with an uniform surface charge −Zq in the centre of a
WS cell of radius R/a. The microions are modelled as divalent particles with diameter a. In
addition to the counterions, there are Ns positive and negative divalent ions of salt. Inside the
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WS cell they are free to move within the annulus r0 < |�r| < R. We investigate λB/a = 2,
the system is thus strongly charged and we expect the ionic correlations to be relevant. To
illustrate this, we calculate the integrated charge within a distance r from the centre of the
colloid. figure 1 shows the comparison between the PB prediction for this observable and the
value obtained from the fDHHC free-energy functional.

It can be seen that the DHHC distribution lies above the PB indicating an increase in
condensation. This increase in condensation is also observed in the case where coions are
not present. Our results in that case were checked with simulations showing remarkable
agreement [11].

In conclusion, in the framework of a density-functional approach we have derived a
correlation correction for the case where electrolytes are present. We show that for the case of
a strongly charged colloid this contribution is able to capture the increase in condensation.
However, since our expression is concave in density, it is unable to show the attraction
between like-charged particles or overcharging [20]. For that purpose, one needs to incorporate
explicitly hard core effects that we will leave for a future work when our results will be compared
with simulations that are currently begin developed.
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